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Abstract: The dispersion relation for planar N = 4 supersymmetric Yang-Mills is iden-

tified with the Casimir of a quantum deformed two-dimensional kinematical symmetry,

Eq(1, 1). The quantum deformed symmetry algebra is generated by the momentum, en-

ergy and boost, with deformation parameter q = e2πi/λ. Representing the boost as the

infinitesimal generator for translations on the rapidity space leads to an elliptic uniformiza-

tion with crossing transformations implemented through translations by the elliptic half-

periods. This quantum deformed algebra can be interpreted as the kinematical symmetry

of a discrete integrable model with lattice spacing given by the BMN length a = 2π/
√

λ.

The interpretation of the boost generator as the corner transfer matrix is briefly discussed.
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1. Introduction

An important boost into our current understanding of the AdS/CFT correspondence came

from the BMN suggestion to probe sectors with large quantum numbers [1]. The BMN

limit provided also an appealing dispersion relation for planar N = 4 supersymmetric

Yang-Mills. The uncovering of integrability both on the gauge [2] and string sides [3] of the

correspondence allowed then the search for the explicit form of the scattering matrices of

N = 4 Yang-Mills [4] and of type IIB string theory in AdS5×S5 [5]. The construction in [4]

also implied a derivation in purely algebraic terms of a general dispersion relation of BMN

type. This dispersion relation exhibits some sort of double nature, as it looks relativistic

in a certain limit, while also includes typical aspects of a lattice dispersion relation. The

absence of conventional relativistic invariance is indeed a feature of magnon kinematics

in the AdS/CFT correspondence, and requires an elliptic approach to crossing symmetry

in the scattering matrix. In [6] an elliptic uniformization was derived and shown to lead

to a non-trivial implementation of crossing in terms of translations by half-periods of the

elliptic curve defining the kinematical rapidity plane.

In this note we address the problem of the kinematical origin of the BMN type of

dispersion relations by identifying the kinematical symmetry group underlying the inte-

grable model. This symmetry is a quantum deformation of the pseudoeuclidean group

Eq(1, 1) [7], with the deformation parameter q given in terms of the ‘t Hooft coupling con-

stant by q = e2πi/λ. The Casimir of this algebra is indeed the dispersion relation in N = 4

supersymmetric Yang-Mills, and the boost is the generator of infinitesimal translations on

the elliptic rapidity plane. The meaning of this kinematical symmetry must be understood

from the structure of the Hopf algebra symmetry [8 – 10, 5, 11, 12]. In [8] the existence of

a central Hopf subalgebra was noticed and the spectrum of this center was proposed as the

rapidity plane. This is indeed the usual situation in integrable models of the chiral Potts

type, where the kinematical symmetry group acts naturally on the spectrum of the central

Hopf subalgebra.
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The kinematical symmetry Eq(1, 1) has non-trivial co-multiplications for the boost gen-

erators that are at the root of the elliptic nature of the rapidity space. The co-multiplication

rules also underly the non-trivial crossing transformations on the rapidities. Furthermore,

as pointed out in [13, 14], these quantum deformed algebras are the natural candidates to

kinematical symmetry groups of lattice models, with the lattice spacing being related to

the quantum deformation parameter. As we will show in the case of N = 4 Yang-Mills this

lattice spacing can be identified with the scale introduced in [1] through the Yang-Mills

interaction between two adjacent points in a BMN operator.

2. Elliptic rapidity

We will start by reviewing the uniformization of the Poincaré group in 1+1 dimensions.

The energy, momentum and boost generators satisfy

[N,P ] = E , [N,E] = P , [E,P ] = 0 . (2.1)

If we introduce a rapidity z in terms of the boost generator through

N ≡ ∂

∂z
, (2.2)

the algebra (2.1) implies

∂P (z)

∂z
= E(z) , (2.3)

∂2P (z)

∂z2
= P (z) . (2.4)

Recalling now the usual relativistic mass shell condition given by the Casimir of the alge-

bra (2.1)

E2 = P 2 + m2 , (2.5)

the solution to equations (2.3) and (2.4) are the standard rapidity relations

P (z) = m sinh z , E(z) = m cosh z . (2.6)

Therefore the rapidity z as defined in (2.2) through the boost generator is the uniformiza-

tion parameter of the curve (2.5). The universal cover in a standard relativistic theory is

the sphere, and thus a trigonometric uniformization is sufficient.

Now let us assume that the commutation relation [N,P ] = E holds and, instead of

the standard relativistic dispersion relation, consider the mass shell condition for N = 4

Yang-Mills [4],

E2 = 1 + α sin2

(

P

2

)

, (2.7)

where α = λ/π2, with λ the ‘t Hooft coupling constant. From (2.3) we then get

∂P (z)

∂z
=

√

1 + α sin2

(

P

2

)

, (2.8)
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that can be integrated in terms of Jacobi elliptic functions,1

sin

(

P (z)

2

)

=
1

(1 + α)1/2
sd

(

α1/2z

2m1/2

∣

∣

∣
m

)

, (2.9)

with elliptic modulus m2 ≡ α/(1 + α). Thus the rapidity space for the N = 4 Yang-Mills

dispersion relation is a curve of genus one. Let us now consider the relativistic limit of (2.7).

This corresponds to the strong-coupling regime, with Peff ≡ Pα1/2

2
finite, so that P ¿ 1.

In this limit (2.9) becomes

Peff(z) = sinh

(

α1/2z

2

)

, (2.10)

which agrees with (2.6) for an effective relativistic rapidity zeff ≡ zα1/2/2.

Once we have determined the elliptic uniformization P (z) we can easily find out

the transformation in the rapidity z realizing the change under crossing symmetry of

the momentum, P → −P . From (2.9) it follows that when P → −P the function

sd(α1/2z/2m1/2|m) changes sign, which requires shifts by the half-periods 2K and 2iK ′,

with K and iK ′ the elliptic quarter-periods,

K(m) = K ′(1 − m) =

∫

1

0

dt
√

(1 − t2)(1 − mt2)
. (2.11)

Therefore the crossing transformation in the rapidity variable z amounts to

z → z +
4K√
1 + α

. (2.12)

In the relativistic limit defined above the shift (2.12) becomes the standard relativistic

crossing transformation.

3. The quantum group symmetry

In the previous section we have constructed a rapidity uniformization of the N = 4 Yang-

Mills dispersion relation based on identifying the boost generator with translations in the

rapidity plane. However in the derivation we have employed the dispersion relation as an

input. A natural question then is what is the kinematical symmetry algebra generated by

some (1+1)-dimensional momentum, energy and boost such that the dispersion relation

for N = 4 Yang-Mills is the corresponding Casimir. Nicely enough this algebra exist and

is given by a quantum deformation of the (1 + 1)-dimensional pseudoeuclidean algebra,

namely Eq(1, 1), with deformation parameter q = eia for a a real number.

The defining relations of Eq(1, 1) are [7, 13]

KEK−1 = E , KNK−1 = N + aE ,

KK−1 = 11 , NE − EN = (K − K−1)/(2a) . (3.1)

1This elliptic uniformization already appeared in [15], and more recently in [16].
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By defining K ≡ qP̂ the Casimir for the previous algebra leads to the dispersion relation

E2 = C +
2

a
sin2

(

aP̂

2

)

, (3.2)

which is precisely the type of dispersion relation we are looking for, once we perform the

identification aP̂ = P and take

α =
2

a
. (3.3)

Notice that (3.1) is a quantum deformation of the two-dimensional Poincaré algebra (2.1).

Representing now the boost operator as the infinitesimal generator for translations on the

rapidity plane leads again to the elliptic uniformization described above. As before the

relativistic limit corresponds to a = 0, with deformation parameter q = 1.

The co-multiplication rules for the algebra (3.1) are

∆(E) = K−1/2 ⊗ E + E ⊗ K1/2 ,

∆(N) = K−1/2 ⊗ N + N ⊗ K1/2 , (3.4)

∆(K) = K ⊗ K ,

and lead to the following non-trivial antipodes,

γ(E) = −E ,

γ(N) = −N −
(a

2

)

E , (3.5)

γ(K) = K−1 .

Notice that the antipodes for E and K correspond to the crossing transformations. The

non-triviality of the antipode for the boost generator already indicates the non-trivial

transformation induced by crossing symmetry on the elliptic rapidity plane.

4. The meaning of the boost generator and the quantum deformation

parameter

In the previous paragraphs we have identified the kinematic symmetry group for N = 4

Yang-Mills magnons with the quantum deformed pseudoeuclidean algebra Eq(1, 1). The

Casimir of this algebra leads to the N = 4 Yang-Mills dispersion relation. Furthermore the

representation of the boost generator in terms of translations on the rapidity plane provides

the elliptic uniformization. This identification was possible because we have included, in

addition to the momentum and the energy, the generator of the boosts. We may now wonder

about the meaning of the inclusion of the boost generator for the underlying integrable

model. The answer to this question is well known for integrable systems and goes back

to Baxter’s corner transfer matrix [17]. In fact given the transfer matrix T(z) for an

integrable model the corner transfer matrix generator is simply defined as ∂/∂z. This

generator, together with the infinite tower of conserved charges (the first two are precisely

the momentum and the energy), defines the lattice kinematical group of the integrable
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model, with the corresponding rapidity uniformization parameter given by z [18]. The

picture becomes specially clear for the simplest of the chiral Potts models, namely the

Ising model, where z lives on an elliptic curve and where Onsager’s uniformization provides

the rapidity uniformization for the kinematical symmetry group generated by the corner

transfer matrix and the set of conserved charges [18]. The double periodicity of the elliptic

functions contains in fact both the symmetry under euclidean rotations and the “Brillouin”

periodicity.

In the case we are considering here the quantum deformed algebra Eq(1, 1) can be in-

terpreted as the kinematical invariance of a discrete system with a lattice spacing together

with a continuous time variable. The lattice spacing is determined by the quantum defor-

mation parameter a. An immediate question is thus what is the meaning of this length

scale in the BMN context. In particular in [1] a natural “length” scale was defined as

aBMN = 2π/
√

λ 2. The scale a obtained in (3.3) turns out to be precisely this BMN length.

An important feature of the algebra that we have identified are the non-trivial co-

multiplication rules, together with the antipode for the boost generator. The constraints

on the dressing factor imposed by them will be presented elsewhere.
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